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EXECUTIVE SUMMARY 

After recent catastrophic disasters, roadways in Region 6 areas suffer not only from the flood-
inundation, but also from the long-term recovery processes that incur enormous maintenance costs. 
Two recent severe flooding events in Texas in August 2017 and Louisiana in August 2016 clearly 
show how catastrophic events cause direct damages such as sweeping away roadways systems as 
well as indirect damage such as deteriorating pavement’s long-term performance. To assess the 
impacts of flooding disasters on roadways, various studies have investigated sampled roadway 
damages with pavement engineering techniques such as a direct damage analysis using 
cores/bores. However, current methods are time-consuming and labor-intensive. For example, 
Pielke et al. stated that rebuilding projects in the area affected by Hurricane Katrina in 2005 (State 
of Louisiana and Mississippi) required $81 billion for completion (Pielke et al. 2008). In addition, 
this process can take up to five years (FEMA 2005) or even more, up to 10 years (Goodyear 2013), 
depending on the severity of a disaster and the size of a damaged area. For example, one study 
(Rowley 2008) claimed that the recovery process of the Hurricane Katrina needed a 10-year period. 
One previous paper (Chang and Nojima 2001) also stated that the highway reconstruction process 
after the Hyogoken-Nanbu Earthquake occurred in the Kobe region in Japan took 20 months. 

In addition, even though existing methods provide a detailed damage analysis of pavement in a 
particular location for a particular time period, there is still a large practical knowledge gap in 
understanding network-level roadway functional/structural damages before-and-after historic 
flooding as well as assessing flooding impacts on roadways over time. Since each roadway system 
encompasses several miles of interconnected networks between cities and States in Region 6, a 
holistic assessment of roadway damages after flooding events not only provides regional roadway 
damage patterns but also facilitates an integrated roadway recovery and maintenance plan. In 
addition, one of critical challenges in a post-disaster recovery process for decision makers is a lack 
of a systematical evaluation process of possible recovery plans that can promptly restore normal 
livelihood (Karlaftis et al. 2007). Unfortunately, a lack of holistic perspective and a long-term 
investigation on roadway damages caused by floods has resulted in the absence of accurate 
maintenance cost prediction. 

The primary objective of this project is to develop a holistic roadway damage assessment method 
using the flood models and the pavement condition data accumulated over the years. This project 
also aims to provide a means for Louisiana and Texas (ultimately to all Region 6’s States) to 
intuitively identify roadway damage patterns at the network level caused by flooding over time as 
well as predict roadway maintenance tasks. To accomplish the proposed goal, this project 
examines roadways in Louisiana and Texas affected by previous flood disasters by using pavement 
assessment data obtained from the Pavement Management System (PMS) in the Louisiana 
Department of Transportation and Development (LaDOTD) and the pavement condition data of 
the City of Houston. Pavement Management Systems in each state DOT and city provide a set of 
tools that helps consistent pavement condition assessment and road network administration to 
distribute the data to each county or perish so they can determine the best maintenance and 
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rehabilitation priorities and strategies (Ferreira et al. 2011). This study analyzed the impact of flood 
events on roadway pavement and developed a damage pattern analysis method to predict affected 
pavements in short-term and long-term pavement performance. In particular, this study 
investigated the impacts of the Louisiana's 2016 flood event on pavement structure by using two 
different flood maps. The first one is based on the Louisiana 2016 flood maps, and the second 
flood data source is the FEMA high-risk flood map. For analyzing the impact of flood events on 
pavement conditions, roadways were separated and categorized based on their locations inside or 
outside of the flood regions. The results of the analysis conducted based on 2016 flood data showed 
that the flood event slightly affects the IRI as the IRI score increased after the event and the 
pavement performance index decreased. In addition, the two prediction models were developed 
using SVM (Support Vector Machine) and XGB (XG Boost) classifiers, to predict pavement 
performance in 2017 based on the aforementioned data (PMS, ADT, etc.) for the 2013-2015 
period. The model developed based on the estimated 2016 flood data showed 76.2% accuracy, and 
the model with the FEMA flood data showed 69.8% accuracy. It can be concluded that the 
estimated 2016 flood data were more accurate compared to FEMA high-risk flood zones. Another 
prediction model was created using FEMA flood data to predict the pavement performance in 2019 
using the data collected from 2013 to 2017. The model's accuracy reached to near 80%. 
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1. INTRODUCTION 

In August 2016, a flood disaster occurred in Louisiana which according to Red Cross was the worst 
US disaster since hurricane Sandy (Yan and Flores 2016). The incident severely damaged 
Louisiana’s infrastructure systems and caused several road closures due to inundated roadways. 
Figure 1 is a flood map retrieved from the USGS (United States Geological Survey) Flood Event 
Viewer that shows the areas affected by the 2016 Louisiana flooding. Roadways can be easily 
inundated by a flooding and many roadway sections are exposed to flood risk. In August 2017, 
Hurricane Harvey caused severe damages to infrastructure including roadways in Texas. Several 
roadways are frequently inundated with floodwater or the stork of debris, providing critical 
problems in providing the path for evacuation, assistance, and others (Chen and Zhang 2014). 

Figure 1: Flooded areas in 2016 Louisiana flood (USGS 2010) 
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Proper evaluation of flooded pavements and their performance is critical for DOT (Department of 
Transportation) practitioners to make risk-informed decisions for pavement construction, 
rehabilitation, and maintenance. These decisions significantly affect system management cost, 
safety risk, and pavement performance. Most of flood damages on roadway pavement are not 
visible after the floodwater recedes (Mallick et al. 2017), and thus, a comprehensive investigation 
is required to estimate the impact of flood in short-term and long-term periods. To assess the 
impacts of flooding disasters on roadways, various studies have investigated sampled roadway 
damages with pavement engineering techniques such as a direct damage analysis using 
cores/bores. In addition, even though existing methods provide a detailed damage analysis of 
pavement in a particular location for a particular time period, there is still a practical knowledge 
gap in understanding network-level roadway functional and structural damages after historic 
flooding as well as assessing flooding impacts on roadways over time. Since each roadway system 
encompasses several miles of interconnected networks between cities and States in Region 6, a 
holistic assessment of roadway damages after flooding events not only provides regional roadway 
damage patterns but also facilitates an integrated roadway recovery and maintenance plan. In 
addition, evaluating roadway damages by adopting the most accurate and latest flooding data has 
been rarely conducted in previous studies. Unfortunately, a lack of holistic perspective and long-
term investigation on roadway damages caused by floods has resulted in the absence of accurate 
maintenance cost prediction. 

To tackle this demand, this study aims to develop a holistic network-level assessment of flood 
impacts on pavement structures using the pavement distress data provided by LA DOTD and the 
city of Houston. The proposed study includes the development and implementation of a holistic 
network-level pavement damage assessment approach for enhancing durability and service life of 
transportation infrastructure in metropolitan and rural areas. This proposal also addresses an 
impending national interest of transportation infrastructure rehab after catastrophic disasters. In 
particular, the proposed research area closely aligns with the mission of the Center that pursues 
the two following objectives: (1) Objective 2: Promote sustainability and resiliency of the 
transportation infrastructure renewal and upgrade; and (2) Objective 5: Enhance the resiliency of 
the transportation infrastructure in the event of extreme weather events. As the critical mass of 
Region 6’s transportation infrastructure has been severely damaged from recent flood disasters, 
this study that concurrently involves the pavement management systems of Louisiana and Texas 
has a significant impact on holistic identification of flood impacts on roadways and integrated 
roadway damage maintenance of Regional 6’s transportation systems. In addition, the expected 
outcomes from this project would assist not only engineers and decision-makers in the Louisiana 
Department of Transportation and Development (LaDOTD) and the Texas Department of 
Transportation (TxDOT), but also Region 6’s State administrators in evaluating roadway damage 
at a regional network level and its long-term impacts after flood disasters. Furthermore, the post-
flood pavement damage analysis is essential for Region 6’s States for the preparation of the claims 
made to FEMA Federal Emergency in case of future flooding disaster. 
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2. OBJECTIVES 

The primary objective of this project is to develop a holistic roadway damage assessment method 
using the flood models and the pavement condition data accumulated over the years. This project 
also aims to provide a means for Louisiana and Texas (ultimately to all Region 6’s States) to 
intuitively identify roadway damage patterns at the network level caused by flooding over time. 

The proposed research objectives have been achieved through the completion of the following 
tasks: (1) Investigate roadways in Louisiana and Texas damaged by previous flood disasters using 
the 2016 flood data and FEMA flood maps and the 2017 Hurricane Harvey flood map; (2) analyze 
pavement assessment data obtained from the Pavement Management System (PMS) in the 
Louisiana Department of Transportation and Development (LaDOTD), and the city of Houston; 
(3) incorporate the pavement condition data into the flood models in GIS; (4) evaluate network-
level functional and structural pavement damages; (5) develop damage pattern detection and 
spatial clustering models that indicate space-time pavement damage trends after flooding events; 
(6) build a prediction model of pavement performance of flood-damaged roadways; and (7) assess 
pavement damage patterns by comparing with PMS. 

Flood events affect various types of pavement distress in short-term or long-term periods after the 
inundation of roadways. Thus, in this study, the PIs evaluated the impact of flood on roadway 
pavement in order to find the specific damage pattern. Based on this analysis, the PIs also 
developed a method to predict the distress scores and pavement performance that can be affected 
by future flood events. 
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3. LITERATURE REVIEW 

Diverse factors can affect the quality of pavement management procedures: pavement data 
collection outsourcing; quality of the location referencing data, historical data, consistency, 
network spatial and temporal coverage; new demands imposed by changing business practices 
(NCHRP 2009). In particular, in order to develop consistent and accurate multi-year preservation 
and maintenance plans of pavement systems, their network-level damage analysis reflecting 
measured condition variables is imperative. In addition, this variation and network-level damage 
patterns have a significant impact on estimated deterioration of roadways and accuracy of 
predicted pavement damage (Ruotoistenmäki et al. 2006), providing necessary treatments and 
budgetary requirements (NCHRP 2009). El-Anwar et al. proposed a mixed integer linear 
programming model for post-disaster recovery of transportation projects (El-Anwar et al. 2016). 
Pradhan et al. also utilized geographic information system (GIS) to address disaster management 
issues (Pradhan et al. 2007), and Karlafits et al. deployed evolutionary algorithms for 
transportation recovery fund allocation (Karlafits et al. 2007). Recently, numerical prediction 
models have been widely developed to evaluate the impact of a natural disaster. Advancements in 
geographic information technology has enhanced the efficiency of these models considerably 
(Burton 2010). For example, the FEMA’s Hazus model provides a feature to determine economic 
loss from earthquake, hurricane, and flood hazards. These models utilize combinations of data 
including building stock, economic data, and vulnerability functions (Watson and Johnson 2004). 

In addition, the studies conducted by the Louisiana Transportation Research Center (LTRC) 
clearly illustrate the impacts of Hurricane Katrina on the structure of the roadways (Zhang et al. 
2008). The studies utilized diverse devices for the field test including falling weight deflectometer 
(FWD), ground penetrating radar (GPR), and other direct evaluation methods. These direct 
assessments showed that the structure of asphalt pavement including the stiffness of both asphaltic 
layer and subgrade was not significantly affected by flood waters. It also illustrates that the impacts 
of flooding on concrete pavement were less than asphalt pavement. Due to diverse materials and 
structures of composite pavements, the conclusion on the direct relationship between flooding 
events and pavements was not been made (Zhang et al. 2008). 

Several studies were also conducted to investigate the impact of flooding disasters on roadway 
pavement. Chen and Zhang (2014) used PMS data for District 02 before and after the 2005 
Hurricane Katrina. In their study they selected IRI (International Roughness Index) and rutting as 
the criteria for assessing the pavement performance. For highly deteriorated pavement sections 
they found that the deterioration slope of the IRI in 2005 to 2007 was 10 in/mile greater than the 
slope in 2003 to 2005, and for rutting, the maximum rut depth in 2007 was at least twice the depth 
in 2005. It was concluded that the average IRI for flooded asphalt and composite pavements was 
slightly higher than non-flooded. It was the opposite for concrete pavement in which the average 
IRI was slightly lower in the flooded zones. The research showed that the rutting depth for asphalt 
pavements in flooded areas was slightly lower than non-flooded areas. Whereas one in composite 
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pavement the maximum rutting depth was slightly higher than one in flooded zones (Chen and 
Zhang 2014). 

For estimating the resilience of pavement after sever flood events, the pavement performance is 
measured with two different road deterioration models (RD), roughness and rutting-based 
deterioration models (Khan et al. 2017). The models were created by using the Monte Carlo 
simulation and transition probability matrix (TPM). The analysis was conducted on 27 different 
road groups at the network level, including three types of road structures (rigid, composite, and 
flexible), three different traffic loads (low, moderate, and high), and three categories for pavement 
strength (poor, fair, and strong). The research was conducted in Australia and the required data 
were collected from the Transport and Main Roads Authority, Queensland (TMR-QLD) database. 
The database was used for data validation for the RD models. Previous studies revealed that the 
impact of flooding to the road pavement leads to changes in its roughness (ΔIRI), and these 
changes are dependent to the flooding probability and the amount of loss in modulus of resilience 
(Mr). The researchers in this study defined different scenarios based on the probability of flooding 
in a region, pavement structure, and traffic loading of the road segments. They calculated the 
pavement's performances for each scenario using the two aforementioned road deterioration 
models (roughness and rutting-based RD). The proposed indicators to attain the pavement 
performance in different scenarios were as follows: 

1- ΔIRI in Year 1 divided by the percent of probability of flooding (ΔIRI/Pr) 
2- ΔIRI in Year 1 divided by the percent of Mr loss at subgrade and granular layers 

(ΔIRI/MrL) 

The scenarios were designed according to the following flood probability: 0%, 50% and 100% 
probabilities in 1 year period. The results showed that the flexible pavement performance is higher 
than one of composite pavement at the first year after flooding. But overall, the rigid pavement 
was selected as the most flood-resilient pavement structure type. 

A recent study was conducted in Canada to evaluate the impact of flood in concrete pavements 
performance. They used the Enhanced Integrated Climate Model (EICM) technique to examine 
the extreme precipitations on concrete pavement combined with a selection of Historical Climate 
Data (HCD), and applied them into the AASHTOWare Pavement ME software (Oyediji et al., 
2019). AASHTOWare Pavement ME is adopted to evaluate pavement structure, material, traffic 
loads, etc. and variations in incremental pavement deterioration and its performance (Tighe 2015). 
Two different pavement designs were considered for pavement structure including (1) a collector 
design and (2) an arterial design. With flood events, their probabilities, and frequencies, various 
scenarios have been investigated in this study. In this research, the AASHTOWare Pavement ME 
Design 2.5.3 tool was employed to model the effect of each scenario on typical collector and 
arterial Jointed Plain Concrete Pavement (JPCP) structure. This study used the following formula 
(equation 1) to calculate the percentage of damage ratio based on IRI. 
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ூோூ೑ ି ூோூ೙೑ 
𝛿ூோூ(%) = (1) 

ூோூ೙೑ 

Where δIRI (%) is the IRI or overall damage ratio, IRIf is the terminal IRI under RCP 4.5 Extreme 
Precipitation (EP) or flood conditions, IRInf is the terminal IRI at base-case or no-flood scenario. 
They calculated the damage ratio under each scenario (different flood event cycles) for both 
aforementioned structures (collector and arterial). They found that the arterial JPCP (Jointed Plain 
Concrete Pavement) had a higher damage ratio compared to collector JPCP for 50-year extreme 
precipitation, while for a 100-year extreme precipitation it is the opposite. In addition, the damage 
ratio for a collector road under 100-year extreme precipitation is higher than the arterial. 

In addition, one study used Mechanistic-Empirical Pavement Design Guide (MEPDG) to 
understand the impact of flood events on the road pavement's performance. The MEPDG system 
is used to predict the pavement performance under various situations (AASHTO 2015). The 
research was separated into two main parts: (1) a pavement damage analysis due to flooding and 
(2) flood characteristics and design flood (Lu et al. 2018). In the pavement damage analysis, the 
following four possible patters were identified: 

1- Delayed effect: which indicates that there was no significant affect on the pavement due to 
flooding and it might have long-term impact. 

2- Jump effect: shows the short-term effect of the extreme situation but no long-term impact 
is identified. 

3- Jump and delayed effect: which is a combination of the previous two possibilities that 
means there is both short-term and long-term impacts for the pavement due to flooding. 

4- Direct failure effect: that implies the failure and total destruction of the pavement. 

The pavement structure types that were investigated in this research include arterial and collector 
pavement types. The loss of pavement performance for each structure was calculated based on 
different situations and scenarios that were attained from a design flood section. For all scenarios 
it was concluded that a 1-day flood event does not have a visible impact on the pavement 
performance. In 4-day duration, the damage ratios reach to 0.39% for arterial and 0.46% for 
collector pavements for all study cycles. It can be concluded that the short-term precipitation does 
not significantly affect the pavement structure's performance. However, the 22-day duration 
simulation showed that the damage ratio increases from 0.39% to 1.17%. The research studies in 
this sphere are conducted through field tests, analyzing the variations in different characteristics 
of pavement structure, and comparing the conditions before and after the disasters. In this research, 
the effect of flood on the road pavement performance was investigated in a data-driven holistic 
level. In addition, a roadway damage pattern was revealed to build a foundation for design a 
performance prediction method that can help understanding the variations in pavement 
characteristics after each flood event. 
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4. METHODOLOGY 

The research investigates the impact of flooding (2016 Louisiana flood and 2017 Hurricane Harvey 
in Texas) on pavement by holistically assessing the accumulated pavement condition data. For 
severe flood incident in Louisiana in 2016, the PMS data from 2013 to 2015 were considered as 
the pavement condition data before the event and the PMS data from 2017 to 2019 databases were 
considered as the post-disaster data. For the 2017 Hurricane Harvey event, the Pavement Condition 
Index (PCI) scores collected from 2016 to 2018 for the city of Houston were analyzed in this study. 
The analysis was conducted based on the comparison of the pavement distress data before and 
after the event. Three different sources of data were available to detect the flooded areas: (1) DOT 
reports about road closures due to the flood events (The roads in the reports were considered as 
flooded control sections); (2) the flood feature maps that identify the estimated flood area for each 
parish; and (3) FEMA high-risk flood areas. The conjunction of each datapoint in the pavement 
condition data (coordination data defined in PMS for each datapoint) with the areas defined in 
these feature maps were considered as flood zone control sections. 

Therefore, the following three types of analyses were conducted for this study in order to evaluate 
the effect of flood on road pavements. 

1. Simple analysis (mean values) with the different approaches for distinguishing the 
flooded roads in the selected parishes. 

a. Analyzing the LA DOTD reports to detect the flooded roads and control sections. 
b. Using estimated flood maps to distinguish the roadways where are located in 

inside of the estimated flood area. 
c. Analyzing the variations of pavement performance before and after the Texas 

2017 flood event using the pavement condition data of the city of Houston. 
2. Clustering analysis that is divided into the two different analyses. 

a. Single feature cluster analysis, which investigated the statistical characters of a 
single attribute such as IRI and integrated them with flood zone feature map. 

b. Multiple feature cluster analysis (grouping analysis), which conducted analysis 
based on several features to find clusters of datapoints with similar statistical 
characters based on various attributes. 

3. Short-term and long-term analyses that investigate the immediate or long-term effects of 
flood on road pavement. 

These analyses facilitate identifying the features/attributes that are effective in evaluating the 
flooded roadways’ distress data. In addition, the distress types that are mostly influenced by flood 
can be detected. The ultimate goal in this research is to predict the trends and alteration of 
pavement conditions of the flood induced control sections. Based on the study findings regarding 
the required attributes, the PIs built a pavement damage prediction model using the two datasets. 
The first one is a dataset for the attained attributes from before-and-after analysis of pavement 
condition alteration. The second dataset contains similar attributes but combined with FEMA flood 
data. In addition, two different prediction models utilizing Support Vector Machine (SVM) and 
XG Boost (XGB) classifiers were used and their accuracies were compared. 

Since the Texas Department of Transportation (TxDOT) considers the pavement condition data as 
sensitive information and maintains a strict policy to keep their pavement data confidential, the 
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PIs received the PCI score data from the city of Houston not including the detailed distress types. 
To build a consistent and robust method of future pavement deterioration affected by future flood 
events, the PIs employed the detailed and long-term PMS data provided from LA DOTD. 

To accomplish the overarching goal of this study, this research followed the tasks. 

(1) Collecting Louisiana and Texas flood data from various sources including FEMA high-risk 
flood zones, and Louisiana's 2016 and Texas 2017 flood data available in ArcMap online: The 
PIs investigated roadways in Louisiana and Texas damaged by previous flood disasters using 
the 2016 Baton Rouge and 2017 Houston flood maps. Data for losses caused by a disaster 
event in a region can be presented by impact assessment models that contain sets of elements 
reflecting hazard, exposure, and physical vulnerability. Hazard components encompass the 
physical characteristics of a hazard event. 

(2) Collecting pavement condition data and map the coordination of each record to ArcGIS 
(ArcMap Software) to identify and distinguish data points inside and outside flood areas: The 
PIs collected the pavement condition data from LaDOTD and the city of Houston. To 
efficiently analyze an enormous amount of pavement condition data accumulated, the PIs did 
cleansing and normalization of pavement assessment data. 

(3) Incorporating the pavement condition data into the flood models: To identify the pavement 
damage conditions represented by the Pavement Quality Index (PQI) of flooded roadways 
according to the historical flood scenarios, the PIs incorporated cleaned pavement condition 
data (Task 2) into the flood models in GIS (Task 1) based on spatial information. 

(4) Conducting short-term and long-term impact analyses: The PIs conducted a simple analysis 
that includes mean values, variations, standard deviations, etc. on pavement distress and 
compare the results of datapoints inside and outside of flood areas to find the pavement distress 
types that were affected by flood events. Short-term and long-term effects of flood on 
pavement distress were also investigated in this analysis. 

(5) Conducting network-level analysis of pavement damages and developing damage pattern 
detection and spatial clustering models: The PIs conducted a detailed analysis including 
clustering analysis and grouping analysis to find clusters of datapoints with similar statistical 
character and find a relation between those data points with flood data. To evaluate functional 
and structural pavement damages, the network level analysis was conducted by comparing 
non-flooded (control sections) and flooded sections using statistical techniques, Analysis of 
Variance (ANOVA), which is the most commonly used technique for comparing the means of 
groups of measurement data. This technique using the general linear model (univariate) in 
SPSS software was executed to partition variance observed in a particular variable into 
pavement damage components. In addition, the PIs applied the abovementioned analysis based 
on the flood data and compare their results. 

(7) Developing a prediction method: The PIs developed a prediction model based on attributes 
attained from the pavement condition analyses that illustrated the impact of flood on pavement 
performance. This study built the two different prediction models and compared their 
accuracies to improve the accuracy of a prediction model for future pavement performance of 
flood-vulnerable roadways. 
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5. ANALYSES AND FINDINGS 

5.1. Analyses based on the LA DOTD reports for the 2016 flood event 
This research investigates the impact of the 2016 Louisiana flood event with the PMS data of the 
East Baton Rouge parish collected during 2013, 2015, and 2019 years. In the first step, the flooded 
roads were identified based on the road closure announcements and reports provided by LA 
DOTD. Road closures caused by flooding in the period of the 2016 Louisiana flood indicate that 
the roadway sections had been inundated and did not provide a proper service. In total, 24 control 
sections were selected to be investigated, including 12 control sections considered as flooded 
roadways and another 12 sections considered as non-flooded roadways. As a next step, the 
variations in IRI and rutting in pavement structures of these sections were analyzed. 

The increase/decrease of distress data were calculated by considering the following assumptions: 

(1) Since the PMS data for the year 2016 were collected after the flood, the 2015 PMS data 
were considered as the distress data before the flood event. 

(2) The distress scores in 2016 were considered as the short-term (immediate) effect, and the 
scores in the following consecutive years (2017-2019) were considered as long-term 
effects. 

The following equations show the short-term and the long-term effect of flood on the selected 
control sections. Equation 2 shows the calculation of mean values for each year. 

೙ೕ
∑

೔సభ
௑೔,ೕ 

𝑀𝑒𝑎𝑛(𝑋௝) = (2) 
௡ೕ 

Where X represents the mean value of each type of distress data for each control section, j is the 
target year, n is the number of datapoints for each control section, and i represents each datapoint 
in the PMS database. Using the mean values of distress data for selected control sections, the short-
term effect of the flood year 2016 can be calculated by equation 3. 

ெ௘௔௡(௑మబభల) ିெ௘௔௡( ௑మబభఱ)
𝑆௖௦(𝑋) = (3) 

ெ௘௔௡(௑మబభఱ) 

Where Scs is the growth rate of distress data in the short-term period for selected control sections. 

For calculating the long-term effect of the 2016 Louisiana flood on the selected control sections, 
equation 4 is used. These equations were used for both flooded and non-flooded control sections. 
Road maintenance and repairs were also performed for the control sections, and thus, some of 
them represent lower distress conditions (not in a consistent damage trend and curve) compared to 
the data collected on the previous year. As a result, the highest mean value of distress between the 
years, 2017 and 2019, was selected for estimating the growth rate of distress in the long-term 
period. 

ெ௔௫(ெ௘௔௡(௑ೕ)) ିெ௘௔௡( ௑మబభఱ)
𝐿௖௦(𝑋) = , 2017 < j < 2019 (4) 

ெ௘௔௡(௑మబభఱ) 

Where Lcs is the growth rate of the distress data in the long-term period for the selected control 
sections. Table 1 shows the results of this analysis. 
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Table 1: The short-term and the long-term growth rates of the selected control sections in the East Baton Rouge parish 
based on the flood inundated roads reported by LA DOTD 

Analyzed 
feature(s) 
IRI 

Alligator 
cracking 

Faulting 

Flood 
(Scs) 
-0% 

+11% 

+279% 

Non-flood 
(Scs) 
-2% 

+3% 

+193% 

Flood 
(Lcs) 
+4% 

+16% 

+150% 

Non-flood 
(Lcs) 
-0% 

+3% 

+139% 

Comment 

An increase in IRI can be seen in the 
long-term assessment of the flooded 
roads, while the non-flooded roads 
do not show the increase in IRI. 
The increase rate in rutting is 
significantly higher for the flooded 
control sections compared to ones of 
the non-flooded sections in both the 
short-term and long-term analyses. 
Faulting score is highly increased in 
the short-term and the long-term for 
both the flooded and the non-
flooded control sections, but the 
flooded roads have the higher 
increase rate. 

Random +4% +3% +4% +2% The flooded roads show slightly the 
cracking higher increase in random cracking 

in both the short-term and the long-
term analysis compared to ones of 
the non-flooded sections. 

The PMS data encompass several abnormal data that can be affected by external variables. For 
example, the negative growth in IRI can be detected with immediate repair/maintenance work (not 
showing in the PMS datasets) or can be errors caused by device calibration. Figure 2 shows the 
selected roadways that were inundated during the 2016 Louisiana flood (highlighted in blue color). 
Values of the average IRI for each control section in the years 2013, 2015, 2016, 2017, 2018, and 
2019 are shown in Table 2 that is divided into the flooded and the non-flooded control sections. 
Table 3 shows the variations of IRI from 2013 to 2019 for the flooded and the non-flooded roads. 
ΔIRI is calculated by subtracting each year’s average IRI from its previous year (equation 5). 

ΔIRI = IRIj – IRIj-1 (5) 

where, j = year of data collection 
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Figure 2: The flood inundated roads in the East Baton Rouge parish highlighted by blue color in ArcMap 

Table 2: Average IRI for each selected control section in both the flooded and the non-flooded areas 

LRS_Flooded 2013 2015 2016 2017 2018 2019 
255-02-1-010 67 153 146 145 157 157 
254-01-1-010 87 271 292 295 297 292 
817-40-2-010 44 166 161 162 165 167 
817-09-1-010 72 213 214 224 200 193 
013-05-1-010 33 96 86 78 98 95 
258-31-1-010 39 119 125 120 124 80 
817-20-1-010 81 211 202 203 226 154 
454-01-2-010 38 117 120 118 119 121 
013-04-2-010 91 62 70 72 73 74 
258-33-1-010 67 174 179 175 181 172 
257-04-1-010 40 109 97 110 115 114 
258-02-1-010 67 193 189 192 199 199 
Flooded_Avg 61 157 157 158 163 152 
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LRS_NonFlooded 2013 2015 2016 2017 2018 2019 
007-08-1-010 22 89 103 107 106 115 
414-01-1-010 38 107 109 116 105 110 
450-10-1-010 39 125 121 120 117 125 
007-90-2-010 75 162 157 172 163 137 
060-01-1-010 89 214 201 191 194 201 
077-05-1-010 85 230 218 227 231 234 
250-01-1-010 50 131 137 130 111 117 
254-02-1-010 57 158 156 143 138 141 
258-32-1-010 88 249 235 264 225 218 
255-01-1-010 74 219 209 192 217 222 
414-01-1-010 38 107 109 116 105 110 
450-92-1-010 61 188 194 194 186 186 
NonFlooded_Avg 60 165 162 164 158 160 

Table 3: Variations in average IRIs from 2013 to 2019 for the flooded roads 

Year Average IRI 
(Overall) 

ΔIRI 
(Flooded) 

ΔIRI (Non-
Flooded) 

2013 60.08 - -
2015 160.98 96.34 105.45 
2016 159.52 -0.20 -2.71 
2017 161.07 1.16 1.93 
2018 160.41 4.81 -6.12 
2019 155.53 -11.17 1.41 

This study considered the average IRI for 2016 as the roadways’ roughness index affected after 
the 2016 Louisiana flood incident. The overall average of IRI in 2013 is significantly different 
from the other years, and thus, it was excluded from the IRI variation calculations (shown in Figure 
3b). Figures 3(a) and 3(b) show the variations in average IRI and ΔIRI from 2015 to 2019. Figure 
4 shows a significant drop in IRI of the flooded roadways after the flood event. 
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(a) (b) 

Figure 3: (a) comparison of average IRIs during 2013 to 2019, (b) variations in ΔIRI for each year from 2013 to 2019 

As shown in Figure 3, there is no significant pattern in the variations of average IRIs in the flooded 
or the non-flooded areas during the surveyed periods. According to the detected PMS data, several 
decreases in the IRI scores can be analyzed, which are abnormal pavement condition data. 
Although several previous studies confirmed that flooding does not have considerable effect on 
pavement, an increase in average IRI is expected since pavement performance is deteriorated over 
time. 

Similar to the IRI comparison analysis, the same method was utilized for analyzing the flood 
impacts on pavement rutting. Figure 4 and 5 show the measurement data of rutting in the selected 
control sections during the years from 2013 to 2018. This task includes comparison of the average 
variations in each consecutive year for the flooded and non-flooded control sections. 

Figure 4: comparison of average Rutting data from 2013 to 2019 
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Figure 5: variations in ΔRutting for each year from 2015 to 2019 

A significant decrease in rutting measurement in 2016 (the year of the flood event) is evident from 
Figure 4 and 5. Although Figure 5 shows an increase in the rate of the rutting score in 2017, by 
comparing the increase of ΔRut in the non-flooded control sections, no conclusion can be made. 

In this step, the analyses were conducted on 24 flooded and non-flooded control sections selected 
in the East Baton Rouge Parish. To identify the latent reasons leading the unexpected results and 
inconsistent data patterns, the PIs examined any possibility of inaccuracy in data collection and 
analyses and revealed the possible factors or external variables affecting pavement conditions. 
First, it is possible that the roadways identified as flooded in the LA DOTD report in 2016, were 
not entirely flooded, but the entire roadways were closed due to a partial flooded section of the 
road. Second, the LRS_IDs are found based on the road's name and address in the report. There 
might be possible errors in mapping some of the LRS_IDs according to their addresses. Third, it 
is also possible that the PMS data contain errors in data collection processes such as issues in a 
vehicle or a measurement device. According to Dawson (2012), the PMS data contain errors which 
are difficult to be identified and addressed. These errors can be derived from the data collection 
system, seasonal changes, human error, the evaluation strategy, the location reference system, etc. 
(Dawson 2012). Last, since pavement condition data can be captured in different parts of the same 
control sections, which can produce heterogeneously altered condition data. The first two 
abovementioned issues could be addressed by using the flood zone maps provided by FEMA, 
USGS, etc. to separate the flooded areas with the non-flooded ones. The next section includes the 
details of the PMS data analyses based on the flood zones using the ArcMap software. 

5.2. Analyses based on Texas 2017 flood maps 
Hurricane Harvey, which is a category 4 storm, occurred in August 2017 that caused a total 
estimated destruction of $108 billion with at least 82 number of casualties in Texas (Moravec 
2017). To investigate the impact of Hurricane Harvey on pavement performance, the PIs selected 
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the city of Houston for the scope of this study for Texas. During this disaster period, the rainfall 
continued for about six days causing major flooding and road closures in the city of Houston. 
Figure 6 shows the intensity of the rainfall in the regions affected during Hurricane Harvey. 

Figure 6: The intensity of the total rainfall in the city of Houston, Texas during Hurricane Harvey (ArcGIS 2017) 

Figure 6 shows that there was a heavy rainfall in the central parts of the city, which resulted in a 
higher rainfall depth than ones in other areas of the city. With the flood map, the inundated roads 
were identified and stored as an ArcMap Online layer package (ArcGIS 2020) as shown in Figure 
7. 
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Figure 7: The flooded roads in the city of Houston, Texas, during the Hurricane Harvey 

As evident from Figure 7, most of the roads in central parts of city of Houston were inundated 
during the event, which are the corresponding results (heavier rainfall areas) shown in Figure 6. 
The Pavement Condition Index (PCI) scores in the years before and after the hurricane i.e. 2016 
until 2018 were provided from the city of Houston and analyzed for this study. The PCI is 
calculated based on a numerical index between 0 and 100 to show a pavement condition. To 
investigate the impact of the flood on pavement in the city of Houston, the study compared the 
performance behavior of the flooded and the non-flooded pavement before and after the flood 
occurrence. Figure 8 shows the analysis of this comparison. 
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Figure 8: Comparison of variations of pavement condition index between years in flooded and non-flooded pavements 

The increase in the PCI scores, which is the abnormal data, can be considered as a result of repairs 
and maintenance of pavement during this event that are not shown in the PCI dataset. Figure 8 
shows that the PCI scores of the flooded areas slightly are dropped by about 2 percent. 

In addition, to improve accuracy of the analysis, the PIs investigated the effect of flood based on 
the pavement areas categorized with high, medium, and low traffic of roadways. The Annual 
Average Daily Traffic (AADT) for the city of Houston was mapped into the ArcMap software. 
Figure 9 shows the mapped results. Each point in Figure 9 indicates a station for traffic count and 
contains the data about the traffic load of the road it is assigned to. These stations were then 
complied with flood maps (the blue zones) to distinguish the traffic data of the flooded roads from 
the non-flooded roadways. 
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Figure 9: AADT data mapped to ArcMap and complied with the flooded areas 

The traffic load was divided into the following three categories: high (above 50,000 traffic 
volume), medium (between 10,000 and 50,000), and low (below 10,000). The results of the 
pavement performance analysis according to the categorization based on traffic data are shown in 
Figure 10. 
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Figure 10: The results of the analysis of pavement performance based on the traffic data categorization 

The comparison analysis of the pavement performance of roadways categorized by high, medium, 
and low traffic shows that the effect of flood on different categories of traffic volume is not 
significant. The top left chart in Figure 10 shows a considerable drop in PCI of the flooded roads 
in the high traffic areas. However, since this drop is also evident in the year before the flood (2015-
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16), this analysis cannot indicate that flooding significantly affects pavement performance of high 
traffic roads. 

The PIs also examined the flood impact on pavements according to types of pavement: Two major 
types of pavements, asphalt and concrete, were utilized to classify the affected roadways. The PCI 
of each type in the flooded and the non-flooded roads were investigated and compared as shown 
in Figure 11. This outcome shows that the roadways with asphalt pavement were affected by flood, 
while the Portland Cement Pavements (PCC) performance increased after the year of flood 
occurrence. 

Figure 11: The performance of roadways categorized with pavement types damaged by the 2017 Texas flood 
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The PIs also classified the roadways based on types of roads: residential/local and major collectors. 
The effect of flood on pavement performance was investigated on each type separately as shown 
in Figure 12. There was no significant effect of flooding for residential/local roads in the left hand 
side of Figure 12. The right hand side of Figure illustrates that the performance of major collectors 
has been considerably dropped. For both the flooded and the non-flooded collectors, about 5 
percent has been dropped. 

Figure 12: The analysis of the effect of flood on the performance of each road type in the 2017 flood event in Houston 
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5.3. Analysis based on the Louisiana 2016 estimated flood zones 
The PIs conducted the data analysis to examine the impact of the 2016 Louisiana flooding on the 
following eight parishes by using a PMS database that contains the distress data from 2013 to 
2019. (Figure 13): 

1. Vermilion parish 
2. St. Landry parish 
3. Evangeline parish 
4. St. Martin parish 
5. Iberia parish 
6. East Baton Rouge parish 
7. St. Helena parish 
8. Lafayette parish 

The flood maps in the ArcMap software for the Louisiana parishes are based on (1) FEMA and (2) 
the Louisiana 2016 flood event. Figure 13 shows the 2016 estimated flood map for the selected 
parishes. The total number of data points in these eight parishes were 26,330. Among the data 
points, 7,512 points were inside of the high-risk flood area according to FEMA flood maps and 
9393 data points were inside of the flood area according to the 2016 flood data. This study used 
both maps and separately evaluated the statistical behaviors of the flooded roads according to the 
PMS data. 

Figure 13: FEMA flood map of the selected parishes 
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Using the 2016 flood maps, the flooded and the non-flooded roads were separately identified. 
Figure 14 shows the Lafayette parish as an example that illustrates the process of this separation 
and is used to conduct the clustering analysis. Using the ArcMap software, the feature map of the 
flood hazard area (Figure 14a) was applied on the parish and the PMS records representing the 
location of each data collection point was also mapped (Figure 14b). The conjunction of each 
datapoint with the flood zone map (Figure 14c) was considered as the flooded and the ones without 
any conjunction (Figure 14d) were considered as the non-flooded datapoints. 

(a) (b) 

(c) (d) 

Figure 14: The example of the flood zone in the Lafayette parish and the PMS data in ArcMap 

Figures 14c and 14d show the PMS datapoints distinguished according to the flood zones. The 
following distress types and pavement performance indicators were analyzed in this analysis step: 
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 Alligator cracking (ALCR) 
 Average IRI (AVG_IRI) 
 Average Faulting (FALT_AVG) 
 Performance Index (PERFINDEX) 
 Random Cracking (RNDM) 
 Roughness (RUFF) 
 Rutting (RUT) 

Figure 15: Comparison of distress data between the flooded and the non-flooded areas in the Lafayette parish 

Composite pavements show lower average distress scores in rutting, roughness, performance 
index, and alligator cracking as shown in Figure 15, but they have higher average of faulting and 
IRI score as shown in the comparison of roads inside and outside of the flood zones. However, 
there was no significant variations identified in other pavement types. 
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5.4. Clustering analyses 
Investigating the clustering and trends of the datapoints with higher/lower average or standard 
deviation in a specific zone is vital to understand hidden interrelationships of pavement and other 
relevant aspects. This analysis illustrates the zones that contain several points with high range of 
IRI score, or a significant drop or increase in IRI in a part of a road. The cluster analysis for 
Average IRI was also applied in the ArcMap. The purpose of this clustering using the attained 
standard deviation attribute was to determine whether the data points with higher variations in IRI 
are clustered or dispersed. If clustered, we can illustrate in what regions they exist and how close 
they are to flood zones. Figure 16 shows the clustering analysis applied on the ArcMap based on 
standard deviation of IRI for each datapoint. The clustering method used in this analysis is called 
"Anselin Local Moran's I". This analysis was performed with the data of the Lafayette parish. 

The PMS data for the Lafayette parish showed that the three types of pavement were used in the 
roads' structures (1) Asphalt pavement (ASP) (2) Composite pavement (COM), and (3) Jointed 
concrete pavement (JCP). The distress analysis was conducted for each pavement type. 

Along with the mean, the standard deviation of the distress data is calculated separately for the 
flooded and the non-flooded control sections to investigate the effect of flood in the dispersion of 
distress values. The Louisiana flood disaster occurred in 2016 and the distress data selected for the 
analysis are from 2015 to 2019. Higher standard deviations indicate higher variations in the 
collected data during the years before and after the flood event. The comparison of standard 
deviation between the flooded and the non-flooded roads can be an indicator for evaluating the 
flood's long-term impact to the pavement. The following figures show the analyzed distress data 
for each pavement type. 

Figure 16: The cluster analysis according to variations in IRI 
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The color codes in Figure 16 are described as follows: 

 The grey points are points that did not show any significant clustering. 
 High-high clusters are datapoints that have high IRI deviations near each other. 
 Low-low clusters are exactly the opposite of high-high clusters, reflecting the datapoints 

with low variations in IRI in an area. 
 High-low outliers are data with high variations in IRI but are surrounded by datapoints 

with low IRI variations. 
 Low-high outliers on the opposite are data points with low variations in IRI but exist in an 

area with datapoints that have high values of IRI deviation. 

By applying the flood zone of the Lafayette parish to the cluster analysis, the PIs identified and 
compared each clustering category based on flooded and non-flooded areas as shown in Figure 17. 

Figure 17: Compliance of cluster analyses and flood zones 

The same analysis was applied with other features with the same color codes. Figure 17 shows the 
clustering of Standard deviation of IRI for the Lafayette parish. Other features such as Variance or 
Mean values for other pavement deterioration types or performance indicators can be investigated 
using the clustering and outlier analysis in ArcMap. Figure 18 shows the clustering results of 
ArcMap based on various features. 
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Standard Deviation (IRI) Variance (IRI) Mean (IRI) 

Standard Deviation (Faulting) Variance (Faulting) Mean (Faulting) 

St. Deviation (Performance Index) Variance (Performance Index) Mean (Performance Index) 
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St. Deviation (Random Cracking) Variance (Random Cracking) Mean (Random Cracking) 

St. Deviation (Roughness) Variance (Roughness) Mean (Roughness) 

St. Deviation (Rutting) Variance (Rutting) Mean (Rutting) 

Figure 18: data clustering and analysis for each pavement deterioration type in Lafayette parish 

The clustering analysis was conducted for all of the selected parishes. Figure 19 shows the 
clustering analysis for pavement performance index. 
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Figure 19: The clustering analysis on pavement performance index for all selected parishes 

In Figure 19, pink and red points show clusters of data points with high performance index which 
are 4,786 in total, and yellow and blue points show the clusters of data points with low performance 
index which are 3,372 in numbers. Among all the significant data, 37% of data points of high 
clusters were inside the flood area, and for data points of low clusters, 45% were inside the flood 
zone. This shows that the low clusters of pavement performance have the majority of significant 
data inside the flood areas. 

The PIs also analyzed statistical characters of several attributes such as pavement distress type, 
location and elevation, pavement types, etc. using the K-means clustering method. Figure 20 shows 
three clusters of road control sections using the attributes Pavement type, Flooded/Non-flooded, 
Elevation, Standard deviation, and Mean. 
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Figure 20: Three different clusters according to pavement type, flooded/non-flooded, elevation, standard deviation, and 
mean 

The number of groups can be assumed based on variations in the Mean value of Pseudo F-Statistic 
(that shows the distance between all clusters). A huge drop or increase in the grouping mean value, 
indicates the best group numbers. Figure 21 shows the Pseudo F-Statistic analysis and indicates a 
significant increase in the mean value from the two (2) number of grouping to three (3) number of 
grouping (red rectangle). 
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Figure 21: Pseudo F-Statistic summary 

As a next step, the PIs conducted a parallel box plot analysis shown in Figure 22. The vertical axis 
of the plot represents the attributes/features that were selected for grouping analysis. The selected 
attributes are as follows: 

 NonFl_0: indicates flooded or non-flooded roads based on each data point's compliance 
with the estimated flood zone map. The value 0 is assigned to points that are outside of 
the flood zone, and 1 is assigned to the points that are inside the flood zone. 

 VFrom_GPS: elevation of each point 
 Type: pavement structure type, which in this parish is consisted of Asphalt (replaced with 

1 in the dataset), Composite (replaced with 2 in the dataset), and Joint Concrete Pavement 
(replaced with 3 in the dataset). 

 MEAN: the mean value of the collected IRI score from 2015 to 2019 for each point. 
 STDEV: the standard deviation of the collected IRI values during the years 2015 to 2019 

for each point. This indicates the amount of variation of the IRI score for each datapoint. 
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Figure 22: The parallel box plot of the 3-group analysis from Figure 20 

The blue line in this plot represents group 1 in Figure 20, which are also shown in blue dots in the 
Figure. All points of this group are outside of the flood zone as the attribute NonFl_0 shows the 0 
score for its group. This group has a higher elevation compared to the other two as can be seen 
from the VFROM_GPS attribute. This group contains all three of the pavement types since the 
TYPE score is near average. This group has the lowest Mean and Standard deviation of IRI score. 

The green line in Figure 22 represents group 3 in Figure 20. The NonFl_0 attribute shows that this 
group belongs to points that are inside the flood zone. The elevation in this group is lower 
compared to group 1. Similar to group 3, this group contains all types of pavement structure, but 
its tendency towards higher values compared to other two groups shows that group 3 has less 
asphalt pavement type. Compared to group 1 which belongs to non-flooded points, this group has 
a slight increase in Mean and Standard deviation in IRI score from 2015 to 2019. 

The red line in Figure 22 represents group 2 in Figure 20. This group contains data points that 
some of them are inside the flood area and some of them are outside. The average elevation is 
similar to one of group 3 and is lower than one of group 1. This group also contains all types of 
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pavement structures. The Mean and Standard deviation values of this group is significantly higher 
than ones of groups 1 and 3. 

By adding other attributes or reducing the current ones, and also changing the number of groups, 
the PIs conducted a new grouping analysis based on IRI scores in the Lafayette parish with their 
grouping map and parallel plot box as shown in the following Figures. 

Figure 23: New grouping analysis without including standard deviation in the analysis 

The IRI mean values from 2015 to 2019 are approximately the same in this grouping. Similar to 
the previous analysis, the elevation of points that are inside the flood zone (group 3 / green line) 
are lower than ones of the other groups. 

Figure 24: Grouping analysis based on two groups 

The NonFl_0 is omitted from the attributes to check if the new grouping can be complied with the 
flood zone in the ArcMap (picture in the left). No specific pattern was not found for compliance 
of this clustering with the flood zone in the parish. 
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Figure 25: Grouping analysis based on four groups and without NonFl_0 attribute 

This analysis was based on four groups by excluding the attribute related to flood zone (NonFl_0). 
This attribute is omitted to investigate the variations in other attributes and see if any relation 
(compliance) can be found among other attributes and flood zones. From the right-hand side of 
Figure 25 (the parallel box plot) it can be seen that the blue line which belongs to group 1 only 
clusters the asphalt pavements, which have the lowest elevation. This group has a higher mean and 
standard deviation compared to ones of groups 2 and 4. From the left-hand side of Figure, it is 
evident that the blue dots are inside the flood zone. The red line represents group 2 which it can 
be concluded from the type attribute in the box plot that it only contains JCP (Joint Concrete 
Pavements). The yellow lines represent asphalt pavement types which have the highest elevation. 
This group (group 3) have the lowest mean and standard deviation in IRI score. It can be seen from 
the map that these points are outside of the flood zone. 

Figure 26: Grouping analysis based on four groups and with including NonFl_0 attribute 

Figure 26 shows similar analysis processes with one shown in Figure 25. The difference is that in 
this grouping the flood zone attribute (NonFl_0) is also included. The red line that represents group 
2 in the map only includes JCP pavement types that have higher average elevation compared to 
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ones of other groups. However, about half of the points in this group are inside the flood zone. 
Group 1 which are shown in blue color are the points with mostly asphalt pavements that are inside 
the flood area. No significant difference is evident in mean or standard deviations in IRI score for 
this group. 

5.5. Short-term and long-term analysis 
Unlike the analysis in section 3.1, which was based on mean values of the control sections, this 
analysis is conducted based on the values of each datapoint. The two assumptions for the 
increase/decrease of distress data in the previous analysis is also considered in this one. As 
mentioned in the description of equation 5, there are possibilities to have repairs or maintenance 
activities done in some control sections, and the distress data in PMS database can reduce over 
each consecutive year. As a result, in this analysis, the datapoints with considerable decrease in 
distress data (more than 10% decrease in the following year) were assumed as repaired roads and 
were excluded from the calculations. 

Similar to the section 3.1 analysis, this analysis process is also separated into short-term and long-
term, but the difference is that the calculations are conducted on every single datapoints instead of 
calculating the mean values of all datapoints. Another difference with the previous one is the 
selected control sections. In this analysis, the flooded control sections are the ones that are inside 
the flood zone, while in the previous analysis, the flooded control sections were the ones that were 
reported as flooded in the DOT report in August 2016. For each datapoint we have equation 6. 

௑మబభల ି ௑మబభఱ 𝑆௜(𝑋) = (6) 
௑మబభఱ 

Where, Si is the growth rate of distress data X in short-term period for each datapoint (i), X 
represents all types of distress data. 

For calculating the long-term effect, the highest distress score during the years 2017 to 2019 were 
selected for each datapoint to compare with 2015 score (equation 7). 

ெ௔௫(௑ೕ) ି ௑మబభఱ 
𝐿௜(𝑋) = , 2017 < j < 2019 (7) 

௑మబభఱ 

Where, Li is the growth rate of distress scores in long-term period for each datapoint (i). 

The overall growth of the distress data according to short-term and long-term periods are calculated 
using Si and Li functions in equations 6 and 7. Equations 8 and 9 are the mean values of all of the 
Si and Li of all datapoints for each distress type. 

೙∑೔సభ ௌ೔𝑆௧ = (8) 
௡ 

∑೙ ௅೔𝐿௧ = ೔సభ (9) 
௡ 

Where St is the overall growth rate of the pavement's distress in short-term, and Lt is the overall 
growth rate of distress in long-term period. Besides the overall analysis that include all types of 
pavements, this section includes analysis one each pavement type separately. In addition, traffic 
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data was included in the analysis to investigate the effect of traffic on flooded and non-flooded 
roads. 

The traffic data was divided into the three categories, Low, Medium, and High according to the 
following range of average daily traffic (ADT): 

• Low traffic volume: ADT < 10,000 
• Medium traffic volume: 10,000 < ADT < 50,000 
• High traffic volume: 50,000 < ADT 

For each category, the short-term (ST) and long-term (LT) effect analyses were conducted 
separately, and the results are shown in the following tables. The empty cells in these tables 
indicate no data available, and the number of datapoints available for the analysis are shown in the 
"No." column. 

Table 4: Short-term and long-term distress analysis for Low traffic pavements 

Analyzed 
feature(s) 

IRI 

Faulting 
PerfIndx 

Random 
Cr 

Roughness 

Flood 

+19% 

+33% 
-3% 

+4% 

+1% 

No. 

825 

48 
825 

825 

849 

Non-
flood 

+15% 

+47% 
-4% 

+5% 

+2% 

No. 

744 

58 
731 

727 

768 

Flood 

+19% 

+32% 
-12% 

+12% 

+7% 

No. 

4,378 

1,117 
4,753 

2,956 

4,558 

Non-
flood 

+21% 

+35% 
-11% 

+9% 

+11% 

No. 

8,147 

1,533 
8,870 

6,037 

8,516 

Comment 

IRI 
increased 
in short-
term for 
flood 
zones 

Random 
cracking 
increased 
in long-
term for 
flood 
areas 
Roughness 
increased 
in flood 
areas in 
long-term 
effect 

Rutting -4% 668 -3% 637 +0% 3,634 +1% 7,168 
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Table 5: Short-term and long-term distress analysis for Medium traffic pavements 

Analyzed 
feature(s) 

IRI 
Faulting 

PerfIndx 
Random Cr 
Roughness 

Flood 
(ST) 

+5% 
+52% 

-3% 
+3% 
+1% 

No. 

1,898 
355 

1,851 
1,270 
2,095 

Non-
flood 
(ST) 

+10% 
+39% 

-3% 
+3% 
+1% 

No. 

2,753 
540 

2,756 
1,941 
3,024 

Flood 
(LT) 

+31% 
+39% 

-13% 
+4% 
+3% 

No. 

1,974 
380 

2,313 
782 

1,861 

Non-
flood 
(LT) 

+36% 
+40% 

-14% 
+6% 
+7% 

No. 

2,783 
665 

3,286 
1,282 
2,670 

Comment 

Faulting 
increased in 
both short-term 
and long-term 
effect in flood 
zones 

Roughness 
slightly 
increased in 
long-term for 
flood areas 

Rutting -2% 1,102 -3% 1,737 -0% 1,192 +2% 1,955 Rutting slightly 
increased in 
long-term for 
flood areas 

Table 6: Short-term and long-term distress analysis for High traffic pavements 

Features Flood No. Non- No. Flood No. Non- No. Comment 
(ST) flood (LT) flood 

IRI 
Faulting 

+6% 
+54% 

334 
60 

(ST) 
+7% 

+49% 
1,224 
138 

+18% 
+40% 

355 
57 

(LT) 
+16% 
+45% 

1,133 
185 Faulting 

increased in 
both short-term 

PerfIndx 
Random Cr 

Roughness 

-2% 
+4% 

+1% 

347 
85 

365 

-3% 
+3% 

+0% 

1,230 
390 

1,336 

-8% 
+1% 

+1% 

377 
57 

326 

-8% 
+1% 

+3% 

1,321 
228 

1,258 

and long-term 
analysis 

Random 
cracking slightly 
increase for 
long-term effect 

Rutting -2% 79 -3% 282 -3% 71 -2% 315 
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5.6. Analysis results and comparison 
Estimated 2016 flood maps show the affected areas in 2016 Louisiana flood. The left-hand side of 
Figure 27 shows the flood prone areas according to the FEMA flood maps, and the right side 
illustrates the estimated flooded areas in the 2016 Louisiana flood obtained from the ArcGIS online 
maps. 

Figure 27: Studied parishes with highlighting the high-risk flood zones (Left: FEMA flood maps. Right: Estimated flood 
areas in 2016 Louisiana flood from ArcGIS online maps) 

As these two maps cover different areas shown in Figure 27, the PIs analyzed only the areas with 
high risk of flood (A, AE, and AV) in the FEMA flood zone map. In the analysis according to 
FEMA flood areas, the PMS data points inside the high-risk flood zones were detected and 
distinguished from the points outside of the flood area. The total number of data points that were 
involved in this study was 26,330, with 7,512 inside the high-risk flood area and 18,817 outside. 

In the analysis according to estimated flood 2016 flood, the PMS data points inside the flood zones 
were detected and distinguished from the points outside of the estimated flood area. The total 
number of data points that were involved in this study was 26,330, with 9,393 inside the high-risk 
flood area and 16,936 outside. 

Figure 28 bellow shows the overall analysis of comparing the distress scores between the data 
points inside and outside high-risk flood area. The left-hand side are the results of the analysis 
based on FEMA and the right-hand side are the results of the analysis according to estimated 2016 
flood maps. 

The comparison shows significant changes between the flood and the non-flood distress scores 
when using estimated flood maps compared to ones using FEMA flood maps. IRI increased 
slightly in the flood areas. No significant difference can be seen in the Faulting scores in both the 
flood and the non-flood analyses and the performance index dropped in the flooded areas. 
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FEMA flood zone ArcGIS estimated 2016 flood 

Alligator cracking 

FEMA flood zone ArcGIS estimated 2016 flood 

IRI 

FEMA flood zone ArcGIS estimated 2016 flood 

Faulting 
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FEMA flood zone ArcGIS estimated 2016 flood 

Performance index 

FEMA flood zone ArcGIS estimated 2016 flood 

Random cracking 

FEMA flood zone ArcGIS estimated 2016 flood 

Roughness 
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FEMA flood zone ArcGIS estimated 2016 flood 

Rutting 

Figure 28: Average distress scores for flood areas and non-flood areas and a comparison between the analysis according 
to FEMA flood maps and ArcGIS estimated 2016 Louisiana flood 

5.7. Prediction model 
According to Reza et al. (2005), performance of a pavement is a comprehensive assessment of a 
pavement condition that involves characterization of skid resistance, structural adequacy, 
roughness, and surface distress (Reza et al. 2005). The performance index attained from the 
Louisiana PMS data was analyzed in the previous sections. The score is between 0 and 100, and 
according to the analysis in section 3.5, which is based on estimated 2016 flood maps, the 
performance index is affected by flood. Reza et al. categorized the performance index into the 
following five groups as shown in Figure 29. 

Figure 29: Categorization of pavement performance index by (Reza et al. 2005) 

According to this categorization, the performance index scores between 0 and 40 were considered 
as very poor in this categorization. Scores between 40 and 60 were considered as poor, 60 to 70 as 
fair, 75 to 90 as good, and the scores above 90 were considered as very good. 
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5.7.1. Prediction model based 2016 flood data 
Various datasets were created on the PMS data, and two different prediction models were applied 
on each dataset to find the prediction model and the dataset with highest accuracy. The chosen 
dataset has the following characteristics. 

Dataset attributes: 

 Repair and rehabilitation data 
 Average faulting 2013 
 Average faulting 2015 
 Random cracking 2013 
 Random cracking 2015 
 Roughness 2013 
 Roughness 2015 
 Rutting 2013 
 Rutting 2015 
 Number of patching and potholes 2013 
 Number of patching and potholes 2015 
 Average IRI 2013 
 Average IRI 2015 
 Performance index 2013 
 Performance index 2015 
 Flood data (based on estimated 2016 flood in Louisiana) 
 Traffic data 
 Pavement type 

Target value: 

 Performance index 2017 

The label of the dataset was the performance index of the pavement in 2017, the year after the 
2016 flood event in Louisiana. 80% of the data were selected for training and the remaining 20% 
were selected for testing. The most accurate prediction model for this dataset was the XG Boost 
(XGB) classifier with the following confusion matrix. XG Boost is a decision-tree-based highly 
efficient optimized library that uses ensemble technique for implementing a machine learning 
algorithm on the datasets. The target variable in this study is the pavement performance index in 
the year 2017, and the model initializes with the function F0(x) which minimizes the loss function 
(mean squared error) using the following formula; 

௡𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑௜ୀଵ(𝑦௜ − 𝛾)ଶ (10) 

Gamma (γ) is the similarity measure between the prediction and target value. The boosting model 
could be initiated with the following formula since with respect to γ, the function initializes at the 
mean, i =1 (29). 
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೙∑ ௬೔೔ స భ𝐹଴(𝑥) = (11) 
௡ 

The predictions are provided by the above function and the new residual for each record will be 
(yi – F0(x)). This process continues until it reaches to the optimum value which is the maximum 
reduction of errors. The diameter of the matrix shows the number of correct predictions in the test 
set. 

Figure 30: Confusion matrix of the XGB prediction model 

The accuracy of the above model is 76.19 percent. 

Support vector machine (SVM) was also used for this dataset, but the accuracy is 70.12 percent, 
which is slightly lower than one of XGB. The confusion matrix for SVM is shown in the following 
figure. 

Figure 31: Confusion matrix of the SVM prediction model 
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5.7.2. Prediction model based on FEMA flood maps 
To create a prediction model for pavement performance, the PIs used FEMA flood maps that can 
help distinguish the data points inside the flood zone from the data points outside the flood zone. 

A dataset with the same attributes of repair data, distress data, traffic data, and pavement type, was 
created, but the FEMA flood data used in this study was different from ones used in the previous 
analysis. The XGB prediction algorithm was applied to the new dataset, and results are shown in 
Figure 32. 

Figure 32: Confusion matrix of the XGB prediction model for the dataset with FEMA flood data 

The accuracy of the above prediction model is 69.8 percent. This result shows that the dataset with 
the 2016 flood data is about 7 percent more accurate than one of the prediction model on the dataset 
with the FEMA flood data. Thus, it can be concluded that, the 2016 flood data is more compatible 
with the pavement performance scores. In other words, the 2016 flood data more accurately shows 
the effect of flood on pavement performance and is a proper source for a prediction model. 

For an overall prediction of pavement performance, the accuracy of the prediction model with the 
dataset with the FEMA flood data can be enhanced by increasing the number of attributes. The 
previous prediction models predict the 2017 pavement performance. To predict the pavement 
performance of 2019, it is needed to add the 2017 data to the dataset. To illustrate, a new dataset 
was created with the following attributes, and target value. 

Two prediction models were used for the PMS dataset with the FEMA flood data. The chosen 
dataset has the following characteristics. The attributes for each record of the dataset are as follows: 

Dataset attributes: 

 Repair and rehabilitation data 
 Random cracking 2013 
 Random cracking 2015 
 Random cracking 2017 
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 Roughness 2013 
 Roughness 2015 
 Roughness 2017 
 Rutting 2013 
 Rutting 2015 
 Rutting 2017 
 Number of patching 2013 
 Number of patching 2015 
 Number of patching 2017 
 Average IRI 2013 
 Average IRI 2015 
 Average IRI 2017 
 Performance index 2013 
 Performance index 2015 
 Performance index 2017 
 Flood data (based on FEMA flood maps) 
 Traffic data 
 Pavement type 

Target value: 

 Performance index 2019 

The label of the data set was the performance index of the pavement in 2019. 

The most accurate prediction model for this dataset was the XGB classifier with the following 
confusion matrix. 

Figure 33: Confusion matrix of XGB classifier applied on the dataset with FEMA flood data and 2013 to 2017 PMS data 
for predicting pavement performance in 2019 
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The accuracy of the above model is 79.05 percent. 

Support vector machine was also used for this dataset, but the accuracy is 71 percent, which is 
slightly lower than one using XGB. The confusion matrix for SVM is shown in the following 
figure. 

Figure 34: Confusion matrix of SVM classifier applied on the dataset with FEMA flood data 

The accuracy of these two models (that was based on the FEMA flood maps) were higher than 
ones of the prediction models based on estimated 2016 flood maps. The reason of this increase in 
accuracy was that this analysis contains larger number of historical data in FEMA datasets. The 
dataset with 2016 flood data, the 2013 and 2015 PMS data were used to predict the pavement 
performance in 2017. Whereas in the FEMA dataset the PMS data of 2013, 2015, and 2017 were 
used to predict the pavement performance in 2019. Increasing the number of records also increased 
the accuracy regardless which dataset we use. 

5.7.3. Testing and implementation of the prediction model 
Among 26,330 records contained in the dataset, 1,000 records were excluded to create a new 
dataset for testing the developed prediction model and evaluate the accuracy of the predicted data 
with the real data. Figure 35 shows the entire 1000 datapoints in the map. 
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Figure 35: The 1000 data points that were excluded from the dataset for testing the model 

The prediction model was applied to the new test set with the historical data of 2013 and 2015 
along with 2016 flood data and also the traffic data for each control section. The target value was 
the performance of each pavement in 2017, a year after the flood occurrence. Pavements that were 
predicted as poor performance were distinguished from the test set. Figure 36 shows the datapoints 
that were predicted to have a poor performance in 2017. 
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Figure 36: The poor performance predicted pavements in red square 

The pavements with poor performance (see Figure 29 for performance categorization) are 
distinguished with the red squares. At this stage we need to comply the predicted datapoints with 
real datapoints that had poor performance in 2017 (Figure 37). 
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Figure 37: Comparing the prediction (red squares) with the real data (green dots) 

The predictions of pavements with poor performance in 2017 shown in the red squares and the 
green dots illustrate the real poor pavements in 2017. As shown in Figure 37, the prediction mostly 
complies with the real data, although there are data points that the model cannot accurately predict. 
To rectify this inaccurate prediction and enhance the model's accuracy, the method is needed to 
include the large number of records. 
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6. CONCLUSIONS 

The primary objective of this research study is to create a network level analysis of pavement 
performance during and after flood events using the pavement condition data and historical 
flooding maps. To this end, PMS data accumulated over 10 years in Louisiana and pavement 
condition data collected in the city of Houston were utilized, and diverse analyses were conducted 
accordingly to figure out meaningful relationships among several features, pavement 
characteristics, and possible factors such as pavement performance indicators, pavement's 
location, elevation, and others. In summary, this study provided the following four different types 
of analyses on the pavement condition data: 

(1) Simple analyses by identifying the flooded roadways in both Louisiana and Texas, and 
comparing the pavement performance before and after the flood event. 
- Using DOTD reports for detecting the flooded roads and control sections in the East 

Baton Rouge Louisiana. 
- Using ArcMap Online maps to identify the flooded roadways in Houston Texas. 

(2) Analyses based on FEMA flood zones, which used the flood zone maps to distinguish 
between the control sections that are inside the flood zone and those that are outside. 

(3) Clustering analyses that can be divided into the two different analyses. 
- Single feature cluster analyses, which investigated the statistical characters of a 

single attribute such as IRI and comply them with flood zone feature map. 
- Multiple feature cluster analyses (grouping analysis), which conducted analysis 

based on several features to find clusters of datapoints with similar statistical 
characters based on various attributes. 

(4) Short-term and long-term analyses. 

The first analysis showed that there can be inconsistencies in the pavement condition data. With 
clearly identified flooded and non-flooded areas in the city of Houston, the comparison analyses 
of the pavement performance of roadways were conducted with different categorization: traffic 
levels, pavement types, and roadway types. For instance, the average IRI score during the 
consecutive years are decreased for some of the control sections, while it is expected to see an 
increase in the IRI as time passes. These abnormal data were found in Louisiana PMS data and the 
city of Houston data. This can be the result of road maintenance or rehabilitation for those control 
sections or can be errors. In particular, even though the city of Houston data shows performance 
deterioration after the 2017 Hurricane Harvey event, because of these unknown variables, the PIs 
were not able to confidently conclude the level of flood impacts on pavement. Although the 
clustering analyses showed interesting clusters of data points in some areas, it is still challenging 
to infer any hypotheses, and require additional in-depth analyses with expert opinions. 

The results of the analyses based on the FEMA flood maps, compared to the analyses according 
to the 2016 estimated Louisiana flood maps, were considerably heterogeneous. The IRI scores in 
the flooded areas were lower in flood areas based on the FEMA map, whereas they were slightly 
higher based on the 2016 estimated flood data. Performance index were considerably lower in 
flood areas according to the 2016 flood maps, while they were higher according to the FEMA map. 
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One of primary outcomes in this study is the prediction model, which showed that the scores range 
of pavement performance is predictable with 76% accuracy using historical data such as previous 
distress data, traffic data, flood data, and others. The control sections of eight parishes involved in 
this study provided a total number of 26,330 records for the dataset required for prediction. 
Prediction can be improved by involving more datapoints form the remaining parishes, but this 
requires data such as flood inundated roads which for the 2016 flood event, are not available for 
every parish. 

In this research study, the PIs had a limited access to the pavement condition data of Texas because 
the Texas Department of Transportation (TxDOT) considers the pavement condition data as 
sensitive information and maintains a strict policy to keep their pavement data confidential. Thus, 
the PIs communicated with the city of Houston and obtained the limited dataset of the PCI scores 
collected from 2016 to 2018, which were utilized in this study. Since this dataset uses the PCI 
scores to measure the pavement conditions not including the detailed distress types and their 
values, the PIs employed the detailed and long-term PMS data provided from LA DOTD to 
conduct clustering analyses and develop a consistent and robust prediction method. 

The PIs believe that this flooding before-and-after analysis is expected to be a critical benchmark 
that helps reduce the cost of obtaining structural composition data for a direct damage analysis 
such as less number of cores/bores. Furthermore, this new method facilitates integrated pavement 
maintenance based on revealed network-level patterns of pavement flood damage. The information 
of pavement damage caused by flooding disasters is also crucial for Region 6’s States for the 
preparation of the claims (quantities) made to FEMA Federal Emergency if they encounter a 
flooding disaster in the future. In addition, the predictive models can help determine the reliable 
post-flood maintenance costs of flexible type pavement reconstruction projects. With diverse 
perspectives to evaluate the PMS data, this project established the first view and systematic post-
flood analysis that practitioners in DOTs can use to prioritize and predict pavement management 
issues and rehabilitation practices. Moreover, this project helps make a well-guided decision on 
the integrated pavement damage recovery and facilitate a synergetic effort to leveraging the uses 
of the current PMS and Pavement Analytics systems of Louisiana and Texas. 

This study addresses urgent Texas and national challenges by providing immediately applicable 
solutions for the resilient roadway renewals of post-disaster damages. This project will provide 
LaDOTD and TxDOT with a guidebook that clearly describes systematic procedures for 
identifying regional pavement damage patterns on the flood model. The research outcomes are 
therefore expected to bring new scientific knowledge on the implications of post-flood damages 
on transportation infrastructure. In addition, the intellectual merit of this research study includes a 
holistic investigation into a network-level PMS/Pavement Analytics data analysis approach (in 
which parameters and feasible regions vary in time) for unveiling latent post-flood pavement 
damage patterns. Furthermore, a prediction model of post-flood pavement performance will be 
new formalized scientific knowledge that will be helpful for practitioners and following 
researchers. The investigation of post-flood pavement damage evaluation helps practitioners and 
communities better understand the impact and economic factors (barriers and enablers) of flood 
disaster on transportation infrastructure. 
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